Photosynthetic acclimation to elevated CO2 in relation to Rubisco gene expression in three C3 species.
نویسندگان
چکیده
Wheat (Triticum aestivum L. var. DL 1266-5), sunflower (Helianthus annuus L. var. MSFH 17) and mungbean [Vigna radiata (L.) Wilczek var. P 9072] were grown in field under atmospheric (360 +/- 10 cm3 m(-3), AC) and elevated (650 +/- 50 cm3 m(-3), EC) CO2 concentrations in open top chambers for entire period of growth and development. Photosynthetic acclimation to elevated CO2 was examined by comparing photosynthesis rate (Pn), Pn/Ci curves, leaf contents of RuBP carboxylase/oxygenase (Rubisco), change in the transcripts of Rubisco small subunit (SSU) gene and leaf carbohydrate constituents in AC and EC grown plants. The study indicated that photosynthetic acclimation to elevated CO2 concentration in wheat occurred because of down regulation of Rubisco, through limitation imposed on Rubisco SSU gene expression, as a consequence of sugar accumulation in the leaves. Leaf starch accumulators, sunflower and mungbean, showed no down regulation of Pn under EC. The Rubisco contents (%) in leaf soluble protein and rbcS transcript levels were not significantly affected in EC plants compared to AC plants of sunflower and mungbean. The study indicated that accumulation of excess assimilates in the leaves as starch was less inhibitory to Pn and would, therefore, be an important trait for sustenance of Pn not only under EC, but also under AC, where Pn inhibited by end products.
منابع مشابه
Acclimation of photosynthesis in relation to Rubisco and non- structural carbohydrate contents and in situ carboxylase activity in Scirpus olneyi grown at elevated CO2 in the field
Stands of Scirpus olneyi, a native saltmarsh sedge with C3 photosynthesis, had been exposed to normal ambient and elevated atmospheric CO2 concentrations (Ca) in their native habitat since 1987. The objective of this investigation was to characterize the acclimation of photosynthesis of Scirpus olneyi stems, the photosynthesizing organs of this species, to long-term elevated Ca treatment in rel...
متن کاملPhotosynthetic acclimation to rising atmospheric carbon dioxide concentration.
With rising level of CO2 in the atmosphere plants are expected to be exposed to higher concentration of CO2. Since, CO2 is a substrate limiting photosynthesis particularly in C3 plants in the present atmosphere, the impact of elevated CO2 would depend mainly on how photosynthesis acclimates or adjusts to the long term elevated level of CO2. Photosynthetic acclimation is a change in photosynthet...
متن کاملSoil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semi-arid ecosystem under elevated CO2.
To model the effect of increasing atmospheric CO2 on semi-arid grasslands, the gas exchange responses of leaves to seasonal changes in soil water, and how they are modified by CO2, must be understood for C3 and C4 species that grow in the same area. In this study, open-top chambers were used to investigate the photosynthetic and stomatal responses of Pascopyrum smithii (C3) and Bouteloua gracil...
متن کاملGas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated i...
متن کاملImportance of leaf versus whole plant CO2 environment for photosynthetic acclimation
The reduction of photosynthetic capacity in many plants grown at elevated CO2 is thought to result from a feedback effect of leaf carbohydrates on gene expression. Carbohydrate feedback at elevated CO2 could result from limitations on carbohydrate utilization at many different points, for example export of triose phosphates from the chloroplast, sucrose synthesis and phloem loading, transport i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of experimental biology
دوره 44 5 شماره
صفحات -
تاریخ انتشار 2006